

Biometrische Aspekte der SYNCHRONOUS Studie

Prof. Dr. Meinhard Kieser / Stefan Englert

Institut für Medizinische Biometrie und Informatik

Universität Heidelberg

meinhard.kieser@imbi.uni-heidelberg.de, englert@imbi.uni-heidelberg.de

SYNCHRONOUS Studientreffen

5. Oktober 2011

Biometrie in klinischen Studien

Planung einer Studie
Design, Hypothese, Zielgröße(n), Einflussgrößen,
Analysemethoden, Fallzahlplanung

Biometrie in klinischen Studien

- Planung einer Studie
 Design, Hypothese, Zielgröße(n), Einflussgrößen,
 Analysemethoden, Fallzahlplanung
- Durchführung einer Studie
 Randomisierung, Qualitätssicherung,
 Zwischenauswertungen

Biometrie in klinischen Studien

- Planung einer Studie
 Design, Hypothese, Zielgröße(n), Einflussgrößen,
 Analysemethoden, Fallzahlplanung
- Durchführung einer Studie Randomisierung, Qualitätssicherung, Zwischenauswertungen
- Abschluss einer Studie
 Auswertung, biometrischer Bericht, Publikation

Design

Zweigruppenvergleich (Resection of the primary tumor followed by systemic therapy vs. Systemic therapy alone), randomisiert, kontrolliert, multizentrisch

Design

Zweigruppenvergleich (Resection of the primary tumor followed by systemic therapy vs. Systemic therapy alone), randomisiert, kontrolliert, multizentrisch

Zielgröße Overall survival

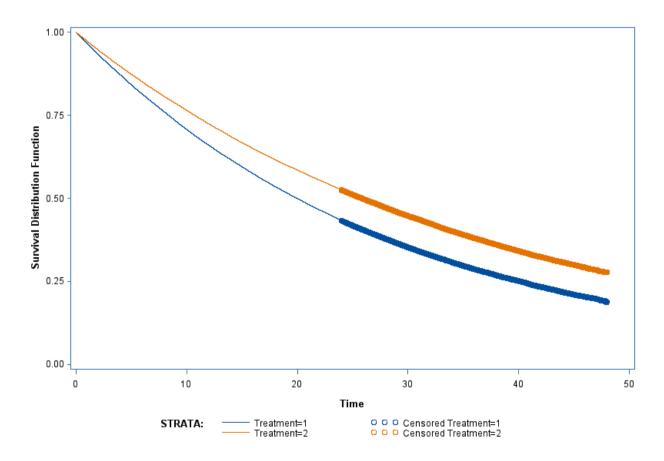
Hypothese

H₀: Die Überlebenszeit ist in beiden Gruppen gleich

H₁: Die Überlebenszeit unterscheidet sich zwischen den beiden Gruppen

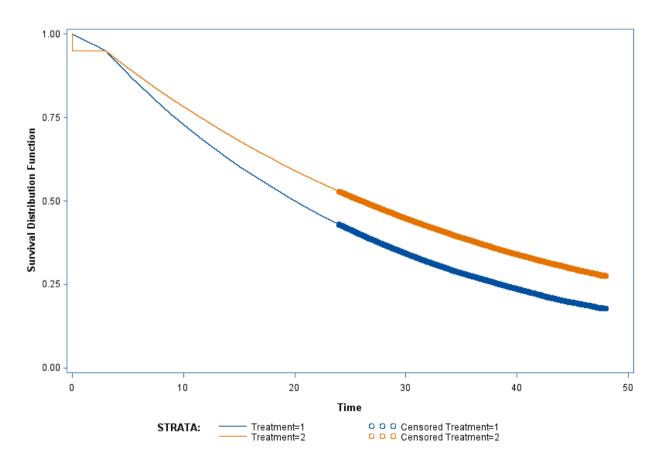
- Einflussgrößen Alter, Zentrum, durchgeführte systemische Therapie
- Analysemethoden
 Cox proportional Hazards Modell mit
 Intervention, Alter, Zentrum, durchgeführte systemische
 Therapie als Kovariaten

Fallzahlplanung


- 2-seitiger Log-rank Test
- Daten von Fuchs, Saltz, Van Cutsem, Souglaskos,
 Seymour, Flanigan, Ruo, Tebbutt als Basis:

```
m_{Systemic therapy alone} = 20 Monate,
m_{Resection followed by systemic therapy} = 26 Monate,
\alpha = 5\% \text{ und } 1-\beta = 85\%
\Rightarrow \mathbf{n} = \mathbf{694} \text{ (347 pro Gruppe)}
```

- Annahme einer drop-out-Rate von 15%
 - \rightarrow n = 800 (400 pro Gruppe).



Robustheitsuntersuchungen

Robustheitsuntersuchungen

• Robustheitsuntersuchungen

	Planung	Robustheitsuntersuchung (Simulationsuntersuchung mit 100'000 Wiederholungen)
Power	85 %	84,6 % bis 90,5 %
Fehler 1. Art	5 %	4,78 % bis 4,98 %

Randomisierung

- Die Zuteilung des einzelnen Patienten zu den Vergleichsgruppen erfolgt zufällig.
- Jeder Patient wird mit gleicher Wahrscheinlichkeit einer der beiden Vergleichsgruppen zugeteilt.
- Idee: Gleiche Verteilung der bekannten und unbekannten Störgrößen in den beiden Vergleichsgruppen

Randomisierung

Vorteile der Randomisierung

(Austin Bradford Hill):

"... wenn wir also Zufallszuteilung benutzt haben, kann der strengste Kritiker bei der Veröffentlichung unserer Ergebnisse nicht sagen, dass die Gruppen deutlich verzerrt sind, weder durch unsere bewusste Bevorzugung noch durch unsere Dummheit."

Randomisierung SYNCHRONOUS

- Web-basiertes Tool (Randomizer.at) der Uni Graz
- Vorteile:
 - 24h verfügbar
 - leicht zu bedienen
 - nächste Zuteilung nicht vorhersehbar
- Nachteile:
 - nicht verfügbar bei Systemabsturz (aber bisher nur 1mal in 3 Jahren)
 - kostenpflichtig

Vielen Dank

Kontakt:

Prof. Dr. Meinhard Kieser meinhard.kieser@imbi.uni-heidelberg.de

Stefan Englert englert@imbi.uni-heidelberg.de